Senin, 03 Desember 2012

RODA DAN KELENGKAPANNYA

RODA DAN KELENGKAPANNYA


roda dan kelengkapannya
Ban adalah bagian terpenting dari sebuah kendaraan bermotor karena ban satu-satunya bagian dari kendaraan bermotor yang mempunyai kontak langsung dengan jalan. Walaupun merupakan faktor terpenting pada sebuah kendaraan bermotor, namun banyak pemilik kendaraan yang sering mengabaikannya, baik yang karena alasan ekonomi maupun keterbatasan ilmu mengenai ban yang dimiliki pengendara.

Karena alasan tersebut diatas saya menulis sedikit untuk sharing kepada pengendara lain agar dalam mengemudikan kendaraannya tahu batasan yang dimiliki oleh ban yang digunakannya.
Sedikit Flashback, mungkin sudah banyak orang tahu bahwa ban (dengan bahan karet) yang sampai sekarang digunakan ditemukan oleh DUNLOP (John Boyd Dunlop) pada tahun 1888. Perkembangan ban sampai saat ini menyempurnakan hasil penemuan DUNLOP tersebut.

Struktur Ban
Struktur Ban Bias dan Ban Radial
Dari hasil pengembangan hingga saat ini struktur yang biasa digunakan oleh produsen ban adalah sbb:
1. Tread/Telapak Ban:
Tread/Telapak Ban adalah bagian dari ban yang kontak langsung dengan permukaaan jalan. Bahan yang digunakan tergantung dari utilitas kendaraan sehingga berpengaruh terhadap ketahanan ban, daya cengkeram dan juga dalam melakukan maneuver.
2. Steel Belts:
Menjaga kekokohan struktur ban dan juga menjaga keamanan dari benda-benda yang dapat menusuk permukaan ban.

3. Spiral Layer:
Lapisan ini berfungsi agar ban lebih tahan dan lebih mudah melakukan maneuver.
4. Shoulder:
Shoulder bagian yang paling tebal pada sebuah ban yang berfungsi melindungi ban dari guncangan maupun benda-benda berbahaya dari luar.
5. Sidewall:
Sidewall adalah bagian yang paling lentur pada sebuah ban. Faktor kenyamanan berkendara pada sebuah ban di dapat dari bagian ini.
6. Plycord:
Plycord adalah bagian utama sebuah ban yang melapisi bagian dalam pada sidewall dan juga bagian dalam telatak ban dari tekanan udara dari dalam ban, beban kendaraan dan juga goncangan dari luar.
7. Bead Filler:
Bead Filler lapisan pengisi yang membuat ban lebih tahan dan memudahkan kendaraan dalam melakukan maneuver.
8. Bead Wires:
Lapisan kawat yang berfungsi menahan ban tetap pada tempatnya pada velg/rim.
9. Chafer 
Bagian yang melindungi plycord dibagian bead dari panas yang terjadi karena gesekan bagian bead dengan velg/rim.
Dari keseluruhan Struktur ban diatas yang paling banyak mempengaruhi ketahan, maneuverability dan juga factor keiritan bahan bakar adalah PLYCORD. Dari ban yang beredar sekarang struktur plycord dapat dibagi sebagai berikut:
1. Radial
Struktur lapisan Plycord pada Ban Radial dari Bead dalam Ke Bead luar saling tegak lurus.
Disamping lapisan plycord masih ada lapisan steel belts.
2. Bias
Lapisan untuk jenis ini plycord diletakkan secara diagonal secara bersilangan, tidak ada lapisan tambahan pada konstruksi Bias ini.
Diantara ban Radial dan ban Bias manakah yang lebih menguntungkan pengendara?
Secara umum ban radial lebih menguntungkan pengendara karena:
1. Lebih Safety, karena ban lebih menapak pada permukaan jalan (bisa dilihat pada grafik, video bisa dilihat di link berikut: http://www.bridgestone.co.in/tyre/tyreknowledge/tyrevideo.htm).
Karena lebih menapak pada permukaan jalan maka jarak pengeremanpun menjadi lebih pendek dan lebih cepat melakukan maneuver.

.
2. Penggunaan bahan bakar yang lebih irit

(table dari http://www.bridgestone.co.in)
.
3. Lebih kokoh karena adanya lapisan steel belts
Tube dan Tubeless
Disamping struktur plycord yang ada struktur ban juga dibagi lagi menjadi tipe yang menggunakan ban dalam (Tube Type) dan tipe yang tidak menggunakan ban dalam (Tubeless).
1. Tubeless
Ban tubeless mempunyai lapisan dalam (inner liner) yang lebih kuat dari pada ban yang menggunakan ban dalam
2. Tube Type
Tipe ban ini menggunakan ban dalam untuk dapat digunakan.
Kelebihan ban Tubeless :
1. Lebih aman. Gambar dibawah memperlihatkan kenapa ban tubeless lebih tahan bocor apabila ban terkena benda tajam
2. Lebih efisien dan ekonomis, efisien dalam konsumsi bahan bakar karena lebih ringan (tidak menggunakan ban dalam) lebih ekonomis karena tidak perlu membeli ban dalam.
3. Lebih dingin, karena tidak ada gesekan antara ban dalam dan ban luar pada saat terjadi “Rolling Resistance�
Banyak pertanyaan yang dilontarkan di milis-milis apakah aman ban yang menggunakan ban dalam dijadikan ban tubeless ataupun sebaliknya ban tubeless menggunakan ban dalam.
Mari kita bahas !:
Untuk alasan safety tidak dianjurkan ban tube dijadikan tubeless maupun ban tubeless menggunakan ban dalam.
1. Ban Tube dijadikan tubeless:
Perbedaan konstruksi ban Tube dan Tubeless bisa dilihat pada gambar berikut.
Pada gambar tersebut bisa dilihat bahwa ban tubeless mempunyai inner liner yang pada ban tube lapisan ini tidak ada sama sekali. Inner liner ini lebih membuat kaku bentuk ban sehingga walaupun ban kekurangan angin bentuk ban masih sesuai dengan bentuknya dan tetap menempel pada rim.
Apakah bisa digunakan ban tube menjadi tubeless?
Jawabannya bisa, namun untuk alasaan safety tidak dianjurkan karena jika ban kekurangan angin bisa menyebabkan kecelakaan yang fatal bagi pengendaranya.
2. Ban Tubeless menggunakan ban dalam
Karena alasan tertentu banyak juga yang menggunakan ban tubeless menggunakan ban dalam. Apakah aman?
Memang bisa ban tubeless menggunakan ban dalam, namun ini tidak dianjurkan dan tidak safety. Untuk penjelasannya bisa dilihat dalam gambar di bawah:
Pada saat kendaraan berjalan (F) ban membawa bobot kendaraan dan pengendara (W). saat pergerakan terjadi akan timbul “Rolling Resistance� (N) yang diakibatkan dari perubahan bentuk ban dan kondisi jalan yang digunakan. Semakin besar Rolling Resistance ini akan mengakibatkan panas yang lebih besar.
Hal inipun terjadi antara ban luar dan ban dalam yang digunakan, namun karena alasan ban tubeless mempunyai inner liner yang lebih kaku maka gesekan yang terjadi antara ban luar dan ban dalam lebih besar. Jika panas yang terjadi berlebihan maka ban dalam dapat meletus bisa fatal akibatnya
Kesimpulan:
Penggunaan ban tube dijadikan tubeless atau ban tubeless dengan menggunakan ban dalam jawabannya adalah bisa.
Namun penggunaan hanya dianjurkan untuk keadaan darurat, bukan untuk digunakan harian
Berapa ukuran ban maksimum
Ratio maksimum lebar bibir velg : lebar tapak ban dari berbagai sumber membatasi angka antara 0.5� s/d 0.58�
Contoh perhitungan :
Lebar bibir velg=1.85�
Lebar maksimum ban yang dianjurkan
= 1.85� / 0.58
= 3.189�
≈ 3.00 ~ 3.50�
Jadi Lebar ban (konversi ke satuan mm)
= 3.50� x 25.4mm
= 88.9mm
≈ 90.0mm; atau maksimum 100mm
Sebenarnya ukuran yang terlalu lebar maupun kekecilan bisa dilihat pada saat ban belum terpasang pada velg. Ban yang terlalu lebar akan terlihat lebih menggembung, sedangkan ban yang lebarnya terlalu kecil akan menyebabkan ban tidak rekat pada velg/rim
Membaca Kode Ban
1. Ukuran Ban
Ukuran ban biasa menggunakan ukuran METRIC dan ukuran INCH.
a. Ukuran Metric
80 / 90 – 17
80 = adalah lebar telapak ban dalam ukuran mm
90 = adalah prosentase tinggi ban yang dihitung dari lebar ban
Jadi tinggi ban = 120 x 90% = 72 mm
17 = Ring Velg yang digunakan
b. Ukuran Inch
275 – 17
275 = adalah lebar telapak dan tinggi ban dalam ukuran mm.
17 = Ring Velg yang digunakan
2. Tread Wear Factor
Indikator ke ausan ban. Jika ban sudah mencapai indicator ini ban sebaiknya lekas diganti
3. Tube/Tubeless
Type ban menggunakan ban dalam atau tubeless
4. Lot Number
Lot number produksi ban 2607 artinya ban diproduksi pada minggu ke 26 (2 digit pertama) pada tahun 2007 (2 digit terakhir)
5. Speed Symbol & Load Index
41P
41 = dilihat pada table pertama maksimum load yang disarankan 145kg
P = dilihat pada table 2 batas maksimum yang disarankan 150km/jam
.
Index Beban dan Kecepatan yang tertera bagi kendaraan roda dua
.
Index Beban dan Kecepatan yang tertera bagi kendaraan roda 4 atau Lebih
6. Rotation
Indikator arah berputar ban semestinya
7. Maximum Load
Maksimum load yang dianjurkan. 160kg beban maksimum dengan tekanan ban 33Psi pada kondisi dingin
»»  READMORE...

sistem kelistrikan dan aksesoris

Sistem Kelistrikan Body

Pengantar


Gambar Komponen kelistrikan 
body
Gambar 2. Komponen kelistrikan body
Definisi Sistem Kelistrikan Body
Sistem kelistrikan body adalah instalasi dari berbagai rangkaian penerangan pada kendaraan. Rangkaian sistem kelistrikan body tersebut, antara lain sistem penerangan lampu kepala, lampu kota, lampu tanda belok, lampu hazzard, lampu plat nomor, lampu rem, dan lampu mundur.
Fungsi Sistem Kelistrikan Body 
Fungsi sistem kelistrikan body adalah sebagai penerangan pada kendaraan untuk memberikan tanda-tanda kepada pengendara lain pada saat akan membelok maupun akan berhenti sehingga pengendara akan aman dari kecelakaan. selain itu, juga untuk memberikan indikator pada pengendara contoh lampu tanda belok ke kanan ataupun kiri sudah menyala, kondisi bahan bakar masih banyak atau sudah habis dan lain-lain.


Bagian-Bagian Sistem Kelistrikan Body
  • Lampu KepalaLampu ini ditempatkan di depan kendaraan, berfungsi untuk menerangi jalan pada malam hari. Umumnya lampu kepala dilengkapi lampu jarak jauh dan jarak dekat. Nyala lampu jarak jauh dan jarak dekat dikontrol oleh dimmer switch. Lampu kepala menyala bersamaan dengan lampu belakang melalui saklar tarik atau putar. Lampu kepala yang dipakai ada dua tipe, yaitu tipe sealed beam dan bola lampu. Jenis Sealed beam banyak dipakai pada kendaraan yang kostruksinya filamen, kaca dan reflektornya menjadi satu kesatuan. Tipe bola lampu banyak digunakan sebagai lampu depan pada sepeda motor.

Komponen lampu kepala
Gambar 3. Komponen lampu kepala

  • Lampu KotaLampu kota (lampu posisi) pada kendaraan bermotor dapat dinyalakan sendiri dan dapat juga menyala bila lampu kepala dinyalakan. Tujuannya adalah bila malam hari atau gelap, pengendara atau orang lain dapat dengan cepat mengetahui lebar atau tinggi kendaraan (untuk kendaraan jenis truk dan bus).

    Karena kegunaannya untuk mengetahui lebar dan tinggi kendaraan, posisi lampu kota harus berada di bagian ujung dari bagian yang terlebar dan tertinggi dari kendaraan .

    Ada beberapa lampu pada kendaraan yang dapat menyala bersama lampu kota atau posisi, di antaranya lampu penerangan papan instrumen dan lampu plat nomor bagian belakang.

    Arus lampu plat nomor selalu dihubungkan dengan lampu kota sebelah kanan dengan maksud bila lampu kota sebelah kanan belakang mati atau tidak menyala, masih ada tanda yang lain tentang lebar kendaraan.

    Gambar Switch 
steering

    Penggunaan bola lampu dan sekring
    Dalam satu unit kendaraan bermotor (mobil), pada saat lampu kota atau posisi dinyalakan, jumlah daya lampu yang diperlukan adalah:

    Nama Komponen
    Daya Lampu
    . .4 buah bola lampu kota
    . .2 buah bola lampu plat Nomor
    . .2 buah bola lampu instrumen
    . .4 X 8 Watt = 32 Watt
    . .2 X 3 Watt = 6 Watt
    . .2 X 3 Watt = 6 Watt

    Sekring yang terpasang untuk lampu kota (Tail Fuse) adalah 1,5 X daya lampu (1,5 X 44 Watt = 66 Watt). Kebutuhan sekring yang ada di pasaran adalah 10 Amper, maka pemilihan sekring yang tepat adalah 10 Amper.
  • Lampu Tanda BelokLampu tanda belok atau sein dan lampu hazzard adalah dua sistem tanda yang berbeda, tetapi menggunakan komponen yang sama.

    Sistem ini terdiri atas empat buah bola lampu berwarna kuning, yaitu
    . .1 bola lampu kiri depan
    . .1 bola lampu kiri belakang
    . .1 bola lampu kanan depan
    . .1 bola lampu kanan belakang

    Agar sistem tanda ini berfungsi dengan baik, lampu-lampu tersebut harus dapat menyala dan berkedip sempurna, yaitu selama 1 menit adalah 60 kali kedipan.
    Hal ini bisa terjadi bila arus yang masuk ke bola lampu berupa arus putus-hubung yang diperoleh dari alat pengedip (flasher).

    Bila saklar lampu tanda belok dioperasikan ke kiri atau ke kanan, lampu yang berkedip kiri saja atau kanan saja. Saklar tersebut biasanya terletak di bawah lingkar kemudi dan dirakit di batang kemudi. Bila saklar lampu hazzard dioperasikan atau difungsikan, lampu yang berkedip adalah kiri dan kanan secara bersamaan. Saklar lampu hazzard biasanya terletak di bagian batang kemudi sebelah depan.

    Perbedaan kedua sistem tersebut adalah dari fungsinya, lampu tanda belok dipergunakan bila kendaraan akan mengubah arah atau berbelok, sedangkan lampu hazzard digunakan bila dalam keadaan bahaya. Misalnya mobil sedang menarik atau ditarik mobil lain, mobil berhenti darurat karena ada kerusakan. Oleh karena itu, lampu hazzard harus dapat dinyalakan tanpa harus menyalakan kunci kontak.


    Gambar 5. Saklar (switch) 
steering
  • Lampu Rem
    Lampu rem pada kendaraan bermotor biasanya berwarna merah dan ditempatkan di bagian belakang yang menyatu dengan lampu kota atau posisi. Daya rem harus lebih besar daripada lampu posisi. Misalnya bola lampu dobel filamen dengan tulisan 8/21 w 12V berarti daya lampu kota 8 w dan lampu rem 21 W dengan tujuan pada saat lampu kota atau posisi menyala dan mobil sedang direm, akan terjadi perubahan sinar lampu terlihat menyala lebih terang.

    Lampu rem akan selalu menyala bila pedal rem diinjak karena pada saat pedal rem diinjak, tekanan tuas pedal rem cenderung ke posisi atas (tidak mengerem).

    Komponen lampu kepala
    Gambar 6. Switch remKomponen 
lampu kepala
  • Lampu Mundur
    Lampu mundur pada kendaraan bermotor berfungsi di samping untuk memberi tanda mundur pada kendaraan yang berada di belakangnya, juga berfungsi untuk menerangi bagian belakang mobil tersebut. Agar nyala lampu tersebut bisa dibedakan dengan lampu yang lain, warna dari lampu mundur adalah putih. Supaya dapat terlihat jelas pada jarak yang cukup jauh, daya lampu yang terpasang sebesar 23 Watt.

    Lampu mundur hanya dapat menyala bila mesin hidup ( kunci kontak “ON” ) dan gigi transmisi pada posisi mundur.
Rangkaian lampu mundur
Komponen-Komponen Pendukung Rangkaian Sistem Kelistrikan Body
  • BateraiBaterai berfungsi sebagai sumber arus searah DC (Dirrect Current) pada sistem kelistrikan otomotif. Umumnya baterai yang digunakan sebagai sumber tenaga pada sistem kelistrikan otomotif mempunyai tegangan 12 Volt dan kapasitasnya berkisar 40–70 AH (Ampere Hour).
    12 Volt Baterai
    Gambar 9. Baterai
    Baterai mempunyai 2 kutub, yaitu kutub (+) dan kutub (-). Kutub (+) diberi kode 30 dan kutub (-) atau minus diberi kode 31.
  • Kunci Kontak (Switch)
    Kelistrikan otomotif pada mobil menggunakan kunci kontak (Ignition Swtch) sebagai saklar utama yang menghubungkan semua sistem kelistrikan dengan sumber tenaga (baterai).

    Kunci kontak
    Gambar 10. Kunci kontak
    Kunci kontak mempunyai beberapa posisi, yaitu ;
    Off : terputus dari sumber tegangan (baterai)
    ACC : terhubung dengan arus baterai , tetapi hanya untuk kebutuhan accecoris
    ON / IG : terhubung ke sistem pengapian (Ignition )
    START : untuk start
  • Saklar
    Kunci kontak
    Gambar 11. Wirring saklar lampu kota (a) dan saklar lampu kepala (b)
    Saklar di atas dapat dioperasikan dengan cara menekan dan melepas atau menarik dan melepas sehingga kontak gerak akan berpindah dari 56a ke 56b atau sebaliknya. Bila saklar tersebut mempunyai 3 posisi berhenti, pada posisi tidak ditarik (posisi 0), tidak ada kontak yang berhubungan dengan 30 (+ baterai). Bila ditarik 2 kali (posisi 2), kontak 30 (+ Baterai) akan berhubungan dengan 56 (ke saklar dim).
  • Sekring (fuse)Sekring adalah suatu komponen kelistrikan yang berfungsi untuk membatasi beban arus yang berlebihan. Selain itu, untuk menghindari terjadinya kerusakan pada rangkaian saat terjadi konsleting atau hubungan singkat. Dengan adanya sekring (fuse) rangkaian kelistrikan, bola lampu, kabel-kabel, relay, fleser, dan yang lainnya tidak akan rusak bila terjadi kelebihan arus atau terjadi hubungan singkat karena sekring akan putus terlebih dahulu. Jenis sekring ada bermacam-macam, baik bentuk (konstruksi) maupun jenis filamennya.
    Sekring jenis good (a)  dan 
sekring jenis cartridge (b)
    Gambar 13. Sekring jenis good (a) dan sekring jenis cartridge (b)
  • Pengedip (Flase)
    Pengedip (flaser) digunakan untuk memutus dan menghubungkan arus secara otomatis pada rangkaian lampu tanda belok sehingga lampu akan berkedip. Jenis pengedip (flaser) ada dua, yaitu jenis bimetal dan magnet.

    Detail flaser (a) dan foto 
flaser (b)
    Gambar 14. Detail flaser (a) dan foto flaser (b)
  • Relay
    Relay adalah saklar elektrik yang digunakan untuk memutus dan menghubungkan arus secara elektrik. Cara kerjanya, bila dialiri arus listrik, kumparan akan menjadi magnet sehingga kontak poin tertarik dan terhubung. Ada dua jenis relay, yaitu relay bila dialiri arus listrik kontak poin akan terhubung dan relay bila dialiri arus listrik akan terputus.

    Detail flaser (a) dan foto 
flaser (b)
    Gambar 15. Detail relay jenis terbuka (a), relay jenis tertutup (b) dan foto relay (c)
  • Kabel PenghubungKabel adalah suatu komponen yang digunakan untuk menghubungkan komponen satu dengan komponen yang lainnya yang terbuat dari tembaga dan diberi isolasi supaya tidak terjadi konseleting. Diameter kabel terdiri atas berbagai ukuran. Penggunaan kabel berbeda-beda ukurannya, bergantung pada berapa besar arus yang mengalir. Bila arus yang mengalir besar, berarti harus menggunakan kabel yang berdiameter besar, tetapi bila arus yang mengalir kecil, cukup menggunakan kabel yang berdiameter kecil.
    Detail flaser (a) dan foto 
flaser (b)
    Gambar 16. Jenis kabel

Rangkaian Sistem Kelistrikan Body
Rangkaian Lampu Kepala
Rangkaian lampu kepala
Keterangan:
. . 1. Lampu kepala kiri
. . 2. Lampu kepala kanan
. . 3. Relay lampu kepala jarak dekat
. . 4. Relay lampu jarak jauh
. . 5. Saklar lampu jarak dekat dan jarak jauh
. . 6. Saklar utama
. . 7. Sekring
. . 8. Fuse link
. . 9. Bateray

Rangkaian Lampu Kota
Rangkaian lampu kota
Keterangan :
. . 1. Lampu kota kanan depan
. . 2. Lampu kota kiri depan
. . 3. Lampu kota kiri belakang
. . 4. Lampu kota kanan belakang
. . 5. Relay
. . 6. Saklar
. . 7. Sekring
. . 8. Fuse link
. . 9. Bateray
Rangkaian Lampu Tanda Belok dan Lampu Hazzard
Rangkaian lampu tanda belok 
dan lampu hazzard
Gambar 18. Rangkaian lampu tanda belok dan lampu hazzard
Keterangan :
. . 1. Lampu tanda belok kiri (depan dan belakang)
. . 2. Lampu tanda belok kanan (depan dan belakang)
. . 3. Saklar lampu Hazzard
. . 4. Saklar lampu tanda belok
. . 5. Flasher (pengedip)
. . 6. Sekring lampu tanda belok
. . 7. Sekring lampu Hazzard
. . 8. Kunci kontak
. . 9. Lampu kontrol tanda belok
Rangkaian Lampu Rem
Rangkaian Lampu rem
Gambar 19. Rangkaian Lampu rem
Keterangan:
. . 1. Lampu Rem kiri
. . 2. lampu rem kanan
. . 3. Switch
. . 4. Sekring
. . 5. Baterai
. . 30. Arus dari Baterei
. . 54. plus baterai
. . 55. lampu rem


Simulasi Rangkaian Lampu Kepala 


Simulasi


Simulasi Rangkaian Lampu Rem 
»»  READMORE...

SISTEM KEMUDI

SISTEM KEMUDI

Fungsi sistem kemudi
Fungsi sistem kemudi adalah untuk mengatur arah kendaraan dengan cara membelokkan roda-roda depan.
Bila roda kemudi diputar, steering column akan meneruskan tenaga putarnya ke steering gear. Steering gear memperbesar tenaga putar ini sehingga dihasilkan momen yang lebih besar untuk menggerakkan roda depan melalui steering linkage.

Pada dasarnya sistem kemudi dibedakan menjadi dua yaitu :
A. Sistem kemudi secara manual
- Dibutuhkan tenaga yang besar untuk menggerakkan roda kemudi
- Pengemudi lebih cepat lelah
B. Sistem kemudi yang memakai power steering
Penggunaan power steering memberikan keuntungan seperti :
- Mengurangi daya pengemudian ( steering effort )
- Kestabilan yang tinggi selama pengemudian


A. SISTEM KEMUDI SECARA MANUAL
Sistem kemudi secara manual jarang dipakai terutama pada mobil-mobil modern. Pada sistem ini dibutuhkan adanya tenaga yang besar untuk mengemudikannya. Akibatnya pengemudi akan cepat lelah apabila mengendarai mobil terutama pada jarak jauh.
Tipe sistem kemudi secara manual yang banyak digunakan adalah :
1. Recirculating ball
Cara kerjanya :
Pada waktu pengemudi memutar roda kemudi, poros utama yang dihubungkan dengan roda kemudi langsung membelok. Di ujung poros utama kerja dari gigi cacing dam mur pada bak roda gigi kemudi menambah tenaga dan memindahkan gerak putar dari roda kemudi ke gerakan mundur maju lengan pitman ( pitman arm ).
gambar Sistem kemudi jenis recirculating ball
Lengan-lengan penghubung (linkage), batang penghubung ( relay rod ), tie rod, lengan idler ( idler arm ) dan lengan nakel arm dihubungkan dengan ujung pitman arm. Mereka memindahkan gaya putar dari kemudi ke roda-roda depan dengan memutar ball joint pada lengan bawah ( lower arm ) dan bantalan atas untuk peredam kejut.
Jenis ini biasanya digunakan pada mobil penumpang atau komersial.
Keuntungan :
-

-
Komponen gigi kemudi relative besar, bisa digunakan untuk mobil ukuran sedang, mobil besar dan kendaraan komersial
Keausan relative kecil dan pemutaran roda kemudi relative ringan
Kerugian :
- Konstruksi rumit karena hubungan antara gigi sector dan gigi pinion tidak langsung
- Biaya perbaikan lebih mahal
2. Jenis rack and pinion
Cara kerja :
Pada waktu roda kemudi diputar, pinion pun ikut berputar. Gerakan ini akan menggerakkan rack dari samping ke samping dan dilanjutkan melalui tie rod ke lengan nakel pada roda-roda depan sehingga satu roda depan didorong, sedangkan satu roda tertarik, hal ini menyebabkan roda-roda berputar pada arah yang sama.
gambar Sistem kemudi jenis rack dan pinion
Kemudi jenis rack and pinion jauh lebih efisien bagi pengemudi untuk mengendalikan roda-roda depan.
Pinion yang dihubungkan dengan poros utama kemudi melalui poros intermediate, berkaitan denngan rack.
Keuntungan :
- Konstruksi ringan dan sederhana
- Persinggungan antara gigi pinion dan rack secara langsung
- Pemindahan momen relatif lebih baik, sehingga lebih ringan
Kerugian :
- Bentuk roda gigi kecil, hanya cocok digunakan pada mobil penumpang ukuran kecil atau sedang
- Lebih cepat aus
- Bentuk gigi rack lurus, dapat menyebabkan cepatnya keausan



KOMPONEN SISTEM KEMUDI
A. STEERING COLUMN
Steering column atau batang kemudi merupakan tempat poros utama. Steering column terdiri dari main shaft yang meneruskan putaran roda kemudi ke steering gear, dan column tube yang mengikat main shaft ke body. Ujung atas dari main shaft dibuat meruncing dan bergerigi, dan roda kemudi diikatkan ditempat tersebut dengan sebuah mur.
Steering column juga merupakan mekanisme penyerap energi yang menyerap gaya dorong dari pengemudi pada saat tabrakan.
Gambar Steering Column
Steering columnjuga merupakan mekanisme penyerap energi yang menyerap gaya dorong dari pengemudi pada saat tabrakan.
Ada dua tipe steering column yaitu :
1. Model Collapsible
Model ini mempunyai keuntungan :
Apabila kendaraan berbenturan / bertabrakan dan steering gear box mendapat tekanan yang kuat, maka main shaft column atau bracket akan runtuh sehingga pengemudi terhindar dari bahaya.
Kerugiannya adalah :
-

-
Main shaft nya kurang kuat, sehingga hanya digunakan pada mobil penumpang atau mobil ukuran kecil.
Konstruksinya lebih rumit
Animasi Penyerapan kekuatan tabrakan
Bagaimana kekuatan tabrakan dapat diserap?
Ada beberapa jenis sistem kemudi collapsibel, yakni yang dapat terlipat waktu terjadi tabrakan. Sebagai contoh di sini diperlihatkan jenis bola
Waktu Tabrakan
Dorongan badan pengemudi terhadap roda kemudi memutuskan pen-pen plastik dan menyebabkan poros utama atas dan tabung batang kemudi terdorong maju, sementara tabung-tabung atas dan bawah dihubungkan oleh bola-bola baja.
Tahanan meluncur bola-bola ini menyerap kekuatan dorong badan pengemudi.
2. Model Non collapsible
Model ini mempunyai keuntungan :
- Main shaftnya lebih kuat sehingga banyak digunakan pada mobil-mobil besar atau mobil-mobil kecil
- Konstruksinya sederhana
Kerugiannya adalah :
-Apabila berbenturan dengan keras, kemudinya tidak dapat menyerap goncangan sehingga keselamatan pengemudi relatif kecil.
Animasi saat terjadi kecelakaan pada mobil mengunakan sistem kemudi model non collapsible
B. STEERING GEAR
Steering gear tidak hanya berfungsi untuk mengarahkan roda depan, tetapi dalam waktu yang bersamaan juga berfungsi sebagai gigi reduksi untuk meningkatkan momen agar kemudi menjadi ringan. Untuk itu diperlukan perbandingan reduksi yang disebut perbandingan steering gear, dan biasanya perbandingannya antara 18 sampai dengan 20 : 1.
Perbandingan yang semakin besar akan menyebabkan kemudi menjadi semakin ringan, tetapi jumlah putarannya akan bertambah banyak, untuk sudut belok yang sama.
Ada beberapa tipe steering gear, tetapi yang banyak digunakan dewasa ini adalah
Gambar Recirculating ball
Gambar Rack and pinion.
Tipe yang pertama, digunakan pada mobil penumpang ukuran sedang sampai besar dan mobil komersial. Sedangkan tipe kedua, digunakan pada mobil penumpang ukuran kecil sampai sedang.
Sudut belok dan gear ratio Pada diagram dapat dilihat hubungan sudut putar sector dengan gear ratio. Pada saat lurus atau sektor shaft berputar 2,5 ° ke kiri atau ke kanan gear ratio masih tetap 19,5 : 1. Sedangkan pada saat belok dengan sudut putar sektor 37° gear ratio menjadi besar yaitu 21,5 : 1. Oleh karena itu pada saat membelok kemudi menjadi ringan.
Tabel Gear rasio dan sudut belok
Ada beberapa bentuk steering gear box, diantaranya :
1. Model worm dan sector roller
Worm gear berkaitan dengan sector roller di bagian tengahnya. Gesekannya dapat mengubah sentuhan antara gigi dengan gigi menjadi sentuhan menggelinding.
2. Model worm dan sector
Pada model ini worm dan sector berkaitan langsung
3. Model screw pin
Pada model ini pin yang berbentuk tirus bergerak sepanjang worm gear
4. Model screw dan nut
Model ini di bagian bawah main shaft terdapat ulir dan sebuah nut terpasang padanya. Pada nut terdapat bagian yang menonjol dan dipasang kan tuas yang terpasang pada rumahnya.
5. Model recirculating ball
Pada model ini, peluru-peluru terdapat dalam lubang-lubang nut untuk membentuk hubungan yang menggelinding antara nut dan worm gear.Mempunyai sifat tahan aus dantahan goncangan yang baik
6. Model rack and pinion
Gerakan putar pinion diubah langsung oleh rack menjadi gerakan mendatar. Model rack and pinion mempunyai konstruksi sederhana, sudut belok yang tajam dan ringan, tetapi goncangan yang diterima dari permukaan jalan mudah diteruskan ke roda depan.
C. STEERING LINKAGE
Steering linkage terdiri dari rod dan arm yang meneruskan tenaga gerak dari steering gear ke roda depan. Walaupun mobil bergerak naik dan turun, gerakan roda kemudi harus diteruskan ke roda-roda depan dengan sangat tepat setiap saat. Ada beberapa tipe steering linkage dan konstruksi joint yang dirancang untuk tujuan tersebut. Bentuk yang tepat sangat mempengaruhi kestabilan pengendaraan.
1. Steering linkage untuk suspensi rigid
Gambar Steering linkage suspensi rigid
2. Steering linkage untuk suspensi independen
Gambar Ball joint pada suspensi independen
Komponen sistem kemudi lainnya bergantung pada jenis kemudi yang digunakan antara lain :
1. Steering wheel.
Ada beberapa macam roda kemudi ditinjau dari konstruksinya yaitu :
a. Roda kemudi besar
Bentuk ini mempunyai keuntungan, yaitu mendapatkan momen yang besar sehingga pada waktu membelokkan kendaraan , akan terasa ringan dan lebih stabil
b. Roda kemudi kecil
Mempunyai keuntungan tidak memakan tempat dan peka terhadap setiap gerakan yang diberikan pada saat jalan lurus, akan tetapi dibutuhkan tenaga besar untuk membelokkan kendaraan karena mempunyai momen kecil
c. Roda kemudi ellips
Model ini dapat mengatasi kedua-duanya karena merupakan gabungan roda kemudi besar dan kecil.
2. Steering Main Shaft
Steering main shaft atau Poros Utama Kemudi berfungsi untuk menghubungkan atau sebagai tempat roda kemudi dengan steering gear.
3. Pitman Arm
Pitman arm meneruskan gerakan gigi kemudi ke relay rod atau drag link. Berfungsi untuk merubah gerakan putar steering column menjadi gerakan maju mundur.
4. Relay Rod
Relay rod dihubungkan dengan pitman arm dan tie rod end kiri serta kanan. Relay rod ini meneruskan gerakan pitman arm ke tie rod
5. Tie Rod
Ujung tie rod yangberulir dipasang pada ujung rack pada kemudi rack end pinion, atau ke dalam pipa penyetelan pada recirculating ball, dengan demikian jarak antara joint- joint dapat disetel.
6. Tie Rod End ( Ball Joint )
Tie rod end dipasanglkan pada tie rod untuk menghubungkan tie rod dengan knuckle arm, relay roda dan lain-lain.
7. Knuckle arm
Knuckle arm meneruskan gerakan tie rod atau drag link ke roda depan melalui steering knuckle.
8. Steering knuckle
Steering knuckle untuk menahan beban yang diberikan pada roda-roda depan dan berfungsi sebagai poros putaran roda. Berputar dengan tumpuan ball joint atau king pin dari suspension arm
9. Idler arm
Pivot dari idler arm dipasang pada body dan ujung lainnya dihubungkan dengan relay rod dengan swivel joint. Arm ini memegang salah satu ujung relay rod dan membatasi gerakan relay rod pada tingkat tertentu.
 POWER STEERING
Sistem kemudi ini memiliki sebuah booster hidraulis dibagian tengah mekanisme kemudi agar kemudi menjadi lebih ringan. Dalam keadaan normal beratnya putaran roda kemudi adalah 2-4 kg ( lihat gambar )
Animasi cara kerja power steering
Sistem power steering direncanakan untuk mengurangi usaha pengemudian bila kendaraan bergerak pada putaran rendah dan menyesuaikan pada tingkat tertentu bila kendaraan bergerak, mulai kecepatan medium sampai kecepatan tinggi.
Penggunaan power steering memberikan keuntungan seperti :
- Mengurangi daya pengemudian ( steering effort )
- Kestabilan yang tinggi selama pengemudian
Cara kerja power steering :
1. Posisi netral
Minyak dari pompa dialirkan ke katup pengontrol ( control valve ). Bila katup pengontrol berada pada posisi netral, semua minyak akan mengalir melalui katup pengontrol ke saluran pembebas ( relief port )dan kembali ke pompa. Pada saat ini tidak terbentuk tekanan dan arena tekanan kedua sisi sama, torak tidak bergerak.
Animasi gerakan fluida pada posisi netral
2. Pada saat membelok
Pada saat poros utama kemudi (steeringmain shaft) diputar ke salah satu arah, katup pengontrol juga akan bergerak menutup salah satu saluran minyak. Saluran yang lain akan terbuka dan akan terjadi perubahan volume aliran minyak dan akhirnya terbentuk tekanan. Pada kedua sisi torak akan terjadi perbedaan tekanan dan torak akan bergerak ke sisi yang bertekanan rendah sehingga minyak yang berada dalam ruangan tersebut akan dikembalikan ke pompa melalui katup pengontrol.
Animasi gerakan fluida pada saat berbelok



VANE PUMP
Vane pump yang berfungsi membangkitkan tekanan hidraulis, pada bagian atas pompa terdapat reservoir yang selalu terisi air dengan fluida khusus, dan permukaan fluida harus selalu diperiksa secara teratur. Untuk tujuan tersebut, bila seseorang memeriksa tinggi permukaan fluida, pengecekan kondisi fluida perlu dilakukan termasuk temperatur fluida, adanya gelembung atau fluida menjadi keruh. Yang perlu diperhatikan bahwa volume fluida power steering tidak berubah kecuali jika terdapat kebocoran.
Gambar vane pump
Tipe Power Steering
Ada beberapa tipe power steering, tetapi masing-masing mempunyai 3 bagian yang terdiri dari pompa, control valve dan power silinder. Ada dua jenis power steering yaitu :
a. Tipe Integral
Sesuai dengan namanya, control valve dan power piston terletak di dalam gear box. Tipe gear yang dipakai ialah recirculating ball.Diperlihatkan di sini mekanisme sistem power steering tipe integral.
Bagian yang utama terdiri dari :
a. Tangki reservoir yang berisi fluida
b. Vane pump yang membangkitkan tenaga hidraulis
c. Gear box yang berisi control valve, power piston dan steering gear
d. Pipa-pipa yang mengalirkan fluida
e. Selang-selang flexible.
Gambar power steering type integral
b. Tipe Rack and Pinion
Control valve power steering tipe ini termasuk di dalam gear housing dan power pistonnya terpisah di dalam power cylinder. Tipe rack and pinion hampir sama dengan mekanisme tipe integral.
Gambar power steering type rack and pinion



Komponen utama vane pump sebagai berikut :
Reservoir tank
:
berfungsi untuk menampung persediaan minyak power steering.
Pump body
:
digerakkan oleh puli poros engkol mesin dan drive belt atau motor listrik,
dan mengalirkan minyak yang bertekanan ke gear housing.
Flow control valve
:
fungsi untuk mengatur volume aliran minyak dari pompa ke gear housing
dan menjaga agar volumenya tetap pada rpm pompa yang berubah-ubah.
Peralatan idle up
:
berfungsi untuk menaikkan rpm mesin pada saat pompa memperoleh beban
maksimum





DIAGNOSA
Diagnosis ( trouble shooting ) sistem kemudi secara manual
Pada saat memeriksa system kemudi, perhatikan bahwa antara system kemudi dengan roda-roda depan ada kaitannya, demikian juga dengan suspensi, poros dan rangka. Adanya hubungan tersebut disebabkan oleh system kemudi, suspensi atau yang lainnya. Oleh karena itu, sebelum memutuskan bahwa gangguan terdapat pada system kemudi, pertimbangkan dan periksa semua penyebab lain yang mungkin ada.
Memeriksa tinggi permukaan oli pada gear box
Cara memeriksanya sebagai berikut :
- Tempatkan kendaraan pada tempat yang rata
- Periksa tinggi permukaan oli
- Bersihkan bagian atas dan roda gigi kemudi
- Kendorkan dan lepaskan sumbat pembuang
- Masukkan obeng kecil ke dalam lubang pengisi oli dan ukur jaraknya.
- Tambahkan oli apabila permukaan rendah, kemudian ada kebocoran atau tidak.
- Pasang kemlai sumbat penguapan

Memeriksa lengan penghubung kemudi ( steering linkage )
Cara memeriksanya sebagai berikut :
- Tempatkan kendaraan pada tempat yang rata
- Periksa tinggi permukaan oli
- Bersihkan bagian atas dari roda gigi kemudi
- Kendorkan dan lepaskan sumbat pembuang
- Masukkan obeng kecil ke dalam lubang pengisi oli dan ukur jaraknya
- Tambahkan oli apabila permukaan rendah, kemudian ada kebocoran atau tidak
- Pasang kembali sumbat penguapan.
Memeriksa tinggi permukaan oli pada gear box
Gambar gear box
Memeriksa lengan penghubung kemudi ( steering linkage )
Gambar lengan penghubung kemudi
Pemeriksaan kebebasan roda kemudi
Langkah-langkahnya :
- Putar roda kemudi hingga pada posisi lurus
- Putar perlahan-lahan roda kemudi jangan samapai roda berherak
- Besarkan gerakan roda kemudi (free play)
- Besarnya kebebasan roda kemudi bergantung pada model mobil, biasanya tidak lebih dari 30 mm
Gambar kebebasan roda kemudi
Kemudi berat
Langkah-langkahnya :
- Periksa tekanan ban
- Periksa steering systemnya (tinggi minyak, steering linkage, steering gear)
- Periksa ball jaoin atau king pin
- Periksa suspension arm
- Periksa tinggi kendaraan
- Periksa wheel aliggment
Memeriksa sabuk penggerak pompa pada power steering
Memeriksa sabuk penggerak pompa pada power steering, yaitu :
- Sabuk penggerak pompa harus diperiksa dan diganti bila pecah-pecah
- mengkilat / terbakar
- kerusakan lain/ tergencet
Apabila sabuk penggerak pompa berbunyi pada saat kendaraan sedang membelok, berarti sabuk dalam keadaan kendor, oleh karena itu, perlu disetel. Penyetelan dapat dilakukan menggunakan alat khusus uji ketegangan sabuk
Gambar
Memeriksa tekanan kerja power steering
Langkah-langkahnya :
-Lepaskan saluran tekanan dari rumah pompa
-Pasangkan meter tekanan dan kran, antara saluran yang dilepas dengan saluran ke luar pompa
-Untuk pemeriksaan teliti, perlu bantuan termometer dan tachometer
-Keluarkan angin yang kemungkinan ada pada sistem dengan jalan menghidupkan motor dan memutar kemudi ke kanan dan ke kiri berkali-kali. Periksa ketinggian cairan, tambahkan bilamana perlu, dan biarkan meter katup sampai cairan mencapai suhu spesifikasi.
-Ukur tekanan cairan pada rumah gigi kemudi, harga spesifikasi tekanan lebih dari 72 kg/cm.
»»  READMORE...